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The goal of this paper is to classify the projections of the 

remaining hexahedra, and subdivide them into triangle fans or 
strips for hardware rendering. Since a single hexahedron can be 
rendered much more quickly than five tetrahedra, in terms of 
both vertex and fragment operations, this offers a significant 
speed up over subdividing all the cells into tetrahedra. 

ABSTRACT:   

This paper presents a method of dividing into triangle fans the 
most common projections of hexahedra from curvilinear 
meshes, so that they can be volume rendered in hardware. 
CR Categories and Subject Descriptors: 1.3 Computer Graphics In a curvilinear grid, the faces can be non-planar, so the 

assumption that the thickness varies linearly across the image 
plane polygons in the subdivision is not true even in an 
orthogonal projection, and is not true even for cubical cells in a 
perspective projection. The details of this nonlinearity are 
discussed in Max, Williams, and Silva [5], and are not dealt 
with here. However, if the forms of the curved face surfaces are 
known, they could be evaluated in a fragment program to 
determine the exact thickness. 

Additional Keywords: volume rendering, polyhedron projection 

1. INTRODUCTION 
The polyhedron projection method for volume rendering 

divides the projection of each volume cell into polygons which 
lie inside the projections of a single front-facing and a single 
back-facing cell face. The thickness, that is, the length of the 
viewing ray inside the cell, varies linearly across such a 
projection polygon, and can be linearly interpolated by the 
hardware in preparation for shading to achieve back-to-front 
color-opacity compositing. This hardware method was 
pioneered by Shirley and Tuchman [1] for tetrahedra, and a 
corresponding method for parallel projection of rectilinear grids 
of identically shaped cells was described by Wilhelms and Van 
Gelder [2]. To form these polygonal regions in the general case, 
the image plane must be subdivided by the projections of all the 
edges of the volume cell. This is a computational geometry 
problem. Wilhelms and Van Gelder [2] described a line sweep 
method for constructing this subdivision, and Max, Williams, 
and Silva [3] described an incremental method which inserted 
the edge projections into the subdivision one at a time. Such 
methods are difficult to implement robustly, since they require 
topological consistency among multiple tests for questions like 
"does point P lie to the left, on, or to the right of line L?" The 
finite precision of floating point arithmetic can cause 
inconsistent results from such tests. 

2     PROJECTION CASES AND THEIR TRIANGLE FANS 
The projection cases handled here include the three discussed 

in Schussman and Max [4], which can arise from the 
perspective projection of a cube. They are shown in figure 1 b, 
c, and d. There are several additional cases, such as the one 
shown in figure 1 a, which can occur only in curvilinear 
meshes. The test in [4] to distinguish the cases was simple, 
since it used the fact that the cell was a cube. For curvilinear 
grids, the test is more involved, as described below. 

The test first looks at the six quadrilateral faces in turn. The 
line equations of the projections of the face's four edges are 
computed. For each line, the other two vertices of the face are 
checked to see if they are on the same side of the edge. If not, 
the projection of the face will be a "bow-tie" self intersecting 
quadrilateral, and the cell is divided into tetrahedra. Next, the 
other four cell vertices which are not vertices of this face are 
tested with the four line equations, to see if any are contained in 
the face projection. If so, the number that do is saved in a 
variable called "count", and their vertex indices are also saved. 
There are four possibilities for count: 0, 1, 2, and 4, shown 
respectively in figure 1 a, b, c, and d. (A projection with count 
= 3 would necessarily have a bow-tie quadrilateral.) In figure 1 
b, there are two quadrilaterals containing a vertex projection. 
After the first one is found, the containment testing stops. 

Schussman and Max [4] proposed a different sort of 
algorithm for a perspective view of a regular cubical grid, 
which classified the projections of a cube into one of a small 
number of cases, based on tests on the whole cube, 
guaranteeing topological consistency. Here we generalize this 
approach to hexahedra in a curvilinear grid.  

A cell in a curvilinear grid can be quite distorted, and one of 
its faces can project to a self-intersecting "bow-tie" quadri- 
lateral. For either way such a face is divided into two triangles, 
the two triangle projections overlap. In this case, for one of the 
hexahedra sharing the offending face, there is a viewing ray 
which exits the hexahedron through one of the overlapping 
triangles, and then re-enters it through the other. It is thus 
impossible to construct a visibility sort for back to front 
compositing. Therefore, we first test each hexahedron for faces 
with self-intersecting projections. If any are found, the cell is 
subdivided into five tetrahedra, and the Shirley-Tuchman 
triangle fans are used on the tetrahedra. There may also be 
degenerate cells, where one or more vertices coincide, for 
example, along the axis in cylindrical or spherical coordinates. 
Such cells are also divided up into tetrahedra, some of which 
may themselves be degenerate. 

 
 
 
 
 
 
 

a b c d  

Figure 1. The four possibilities for count. a: 0, b: 1, c: 2, and d: 4. 
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V4
The vertices of our hexahedra are numbered as in figure 2. In 

order to label the vertices in the triangle fans in a standard 
order, a vertex index permutation corresponding to a rotation is 
found so that the vertices of the face that contains the projected 
vertex or vertices ends up with indices 0, 1, 2, and 3. A further 
rotation permutation insures that in the count = 1 case, the 
contained vertex has index 7, or in the count = 2 case, the 
contained vertices have indices 6 and 7.  

 

V5 
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Let us start with the count = 1 projection topologies, which 
have the most different configurations in curvilinear grids. 

V8  

In the cube projection situation shown in figure 2, edges V7V4 
and V0V1 intersect in a new vertex V8, and edges V7V6 and V1V2 
intersect in a new vertex V9. The two triangle fans list vertex 
indices 8, 1, 5, 4, 0, 3, 7, 1, and indices 9, 7, 3, 2, 6, 5, 1, 7. 

V7  
V9 V6

 

 V4 V5  V3 V2 
       

V0 V8 
 Figure 3. Vertex indices for alternate A of the count = 1 case. 

The three triangle fans are shown in different shades of grey. 
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Figure 2. Vertex indices for the standard count = 1 case. The first 

triangle fan is shown shaded.  
In curvilinear grids, one of these edge intersections may not 

be found. If vertex V8 is not found because edges V7V4 and V0V1 
do not intersect, as shown in figure 3, we look instead for V8 at 
the intersection of edges V7V4 and V1V2, and another new vertex 
V10 at the intersection of edges V7V4 and V1V5. Three triangle 
fans are used. The first lists vertex indices 9, 6, 2, 3, 7, 8, 10, 5, 
6; the second lists indices 8, 7, 3, 0, 1; and the third lists indices 
10, 8, 1, 0, 4, 5. 

 

 
V3 V2

Figure 4. Vertex indices for alternate B of the count = 1 case. 
In a similar case vertex V9 is the one not found, and the 

revised vertex numbering is as shown in figure 4. We look for 
V9 at the intersection of edges V7V6 and V0V1 and a new vertex 
V10 at the intersection of edges V7V6 and V1V5. There are again 
three triangle fans. The first lists vertex indices 10, 5, 6, 2, 1, 9, 
8, 4, 5; the second list indices 9, 1, 2, 3, 7; and the third lists 
indices 8, 9, 7, 3, 0, 4. 
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Going back to the situation in figure 3, if V8 is found at the 
intersection of edges V7V4 and V1V2, but V10 is not found at the 
intersection of edges V7V4 and V1V5, then we look instead for 
V10 at the intersection of edges V1V2 and V4V0. The 
configuration is then as in figure 5, and the two triangle fans list 
vertices 9, 2, 3, 7, 8, 4, 5, 6, 2, and 10, 7, 3, 0, 1, 5, 4, 8, 7. 

V8 

V7 

V9 V6 There is a similar situation for the case in figure 4. If V10 is 
not found as expected at the intersection of edges V7V6 and 
V1V5,  then  we look for it at the intersection of edges  V2V6  and  

V3 
V2 

 
  

 Figure 5. Vertex indices for alternate C of the count = 1 case. 
 



 The count = 4 case shown in figure 7 needs no extra vertices. 
Two triangle fans are used. The first fan lists vertex indices 4, 
0, 3, 7, 6, 5, 1, 0; and the second lists indices 6, 7, 3, 2, 1, 5.  

V4 V5 
 

The count = 2 case shown in figure 8 has a new vertex V8 at 
the intersection of edges V7V4 and V0V1, a new vertex V9 at the 
intersection of edges V6V5 and V0V1. As in [4], we use a triangle 
fan, with vertex indices 7, 8, 0, 3, 2, 6, 9, 8, and a triangle strip 
with vertex indices 0, 4, 8, 5, 9, 1, 6, 2. 

 

V6 V0 V8  V9 V10 The last case to consider is when count = 0. If no 
quadrilateral contains other projected vertices and there are no 
bow-tie projections, the projected vertices form a convex 
octagon, as in figure 1 a, or figure 9. In this case, the vertex 
renumbering scheme is somewhat different. The vertex indices 
are permuted so that they run counter-clockwise around the 
octagon, as in figure 9. Each of the four diagonal projected 
edges that are not on the perimeter of the octagon belong to one 
quadrilateral whose other sides are part of the perimeter, and 
therefore must join a vertex i with vertex (i + 3) mod 8 or (i - 3) 
mod 8. If vertex 0 is connected by such a diagonal to vertex 5 
(the i – 3 case), the vertices are renumbered by replacing index i 
by index 8 – i, so that the projection topology is as in figure 9.  

 V1 V7 

 

 

 V2 V3 

 

Figure 6. Vertex indices for alternate D of the count = 1 case. 

The new vertices are then found as follows: vertex V8 at the 
intersection of edges V0V3 and V1V6, vertex V9 at the 
intersection of edges V0V3 and V2V5, vertex V10 at the 
intersection of edges V4V7 and V2V5, and vertex V11 at the 
intersection of edges V4V7 and V1V6. We use a triangle fan with 
vertex indices 8, 0, 1, 2, 9, 10, 11, 7, 0, and a triangle strip with 
vertex indices 7, 6, 11, 5, 10, 4, 3, 9, 2. 

 

V1V5. The configuration is then as in figure 6, and the two 
triangle fans list vertices 8, 4, 0, 3, 7, 9, 6, 5, 4, and vertices 10, 
6, 9, 7, 3, 2, 1, 5, 6. 
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Figure 7. Vertex indices for the count = 4 case. 
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Figure 8.Vertex indices for the count = 2 case. 

 
Figure 9. Vertex indices for count = 0 case.  

3    RESULTS 
Figures 10 and 11 show projections with two different transfer 

functions of a volume made up of 32 curvilinear grids, with a total 
of 141,960 hexahedra. Among these hexahedra, 50,352 were 
degenerate, with two or more vertices coinciding, and 924 more 
had "bow tie" self intersecting face projections. In both these 
cases, we subdivided the cell into five tetrahedra. 

There remained 90,684 hexahedra. Among the count = 1 cases, 
there were 78,146 standard projections as in figure 2,  242 
alternate projections as in figure 3,  532 as in figure 4,  16 as in 
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figure 5, and 31 as in figure 6. There were 223 count = 4 cases as 
in figure 7,  11,333 count = 2 cases as in figure 8, and 161 count = 
0 cases as in figure 9. These projections were discovered one by 
one by analysing the cases that arose in projecting this data set. 
No other cases were discovered among the projections of 
10,000,000,000 hexahedra, with vertices chosen randomly inside 
a unit cube, but so far I do not have a proof that no others exist 
among projections of non-degenerate hexahedra with no bow-tie 
quadrilaterals. 

 

 

 

 

 Using one processor of an 800 MHz dual Pentium4 Xeon PC, 
and an nVidia 5900FXUltra graphics card, figure 10 took 5.27 
seconds, of which 0.13 were used to read in the data, 3.5 were 
used to classify the cases, and 1.51 were used for preparing and 
rendering the triangle strips and fans. 
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Figure 11. Shadow of same volume with a different transfer 
function.  


